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Abstract. Observing the sun with Electronically Assisted Astronomy
allows understanding of solar phenomena, contributes to scientific re-
search, promotes science education, and provides recreational enjoyment,
all while requiring strict adherence to safety measures. In this paper,
we present an annotated dataset of solar images captured with smart
telescopes, and we show how this dataset allows to train Deep Learn-
ing YOLOv7 models for the detection of sunspots. Both data and Deep
Learning model can be used by the general public to observe sun with
contextual information.
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1 Introduction

Sun observation using equipment accessible to amateur and professional as-
tronomers offers a mix of educational, scientific and recreational benefits, and
can be done outdoors or in town centres, as long as the visible horizon allows the
Sun to be pointed at. This activity improves understanding of solar physics and
practical skills while allowing amateurs to provide valuable data for scientific
research, particularly in monitoring solar activity. Even if the result will not be
as detailed and impressive as the results provided by space agencies services like
the Space Weather Prediction Center 1, it fosters a sense of wonder, community
engagement and promotes public awareness and education [7].

In particular, solar observation allows to study sunspots, one of the most
visible features of solar activity cycles. Appearing as dark regions of varying size,
sunspots are manifestations of strong perturbations in the magnetic field of the
Sun, and are continuously studied to analyze solar activity cycles. Sunspots are
also regularly monitored by passionate amateur astronomers, and in May 2024
they were a warning of a solar storm causing fantastic northern lights observed
at unusual latitudes 2.

In practice, always using a dedicated and safe filter, solar observation can be
done with the naked eye [17], with a refractor or reflector type instrument [6].

1 https://www.swpc.noaa.gov
2 https://en.wikipedia.org/wiki/May_2024_solar_storm

https://www.swpc.noaa.gov
https://en.wikipedia.org/wiki/May_2024_solar_storm
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Moreover, it can be carried out via Electronically Assisted Astronomy (EAA),
applied by astronomers to easily observe the sky (night and day). Sometimes
known as video astronomy, EAA consists in collecting images directly from a
sensitive camera coupled to an optical system, and then applying lightweight
image processing on a computing device to generate enhanced images in near
real time of targets directly on screens (tablet, smartphone, even TV) [10].

The recent advent of intelligent telescopes has transformed observation, mak-
ing it accessible to almost everyone. These telescopes automatically manage
phases that can be tedious, such as initialization with sky recognition, tracking,
and focusing. These telescopes require no prior knowledge, making it possible
to capture and share instant solar images in less than several minutes. We can
mention that dedicated portable robotic telescopes were already designed and
used to observe Sun for educational purposes [13].

Nowadays, and as is the case in many fields, Artificial Intelligence is increas-
ingly used to support observational astronomy [11]. For instance, AI can also
be used to help and encourage solar observation, both for amateurs and pro-
fessionals, as is being done for STEM outreach [15]. In this paper, we describe
SunspotsYoloDataset, a collection of annotated solar images captured by two
smart telescopes, and we explain how we trained Deep Learning models to de-
tect sunspots on this kind of images. On the one hand, the dataset shows what it
is possible to obtain in terms of solar images with equipment and from observa-
tion conditions accessible to amateurs. On the other hand, detection models can
serve as a tool to help amateur astronomers gain contextual information about
what is being observed.

The present paper is structured as follows. In Section 2, we list and dis-
cuss existing techniques for sunspots in astronomical images. In Section 3, we
present how we collected and compiled data to generate the SunspotsYoloDataset
dataset. We detail different our approach to detect sunspots based on this dataset
in Section 4. Finally, we discuss the results in Section 5, and we propose some
perspectives in Section 6.

2 Related works

In recent years, numerous automated methods for detecting sunspots have been
proposed. Traditional image processing methods rely primarily on the intensity
of sunspots, as they tend to appear darker than their surroundings [5,4]. These
techniques require a threshold to separate sunspots from the background, which
will depend greatly on the images to be analysed. Thus, many Machine Learning
techniques were proposed and we can mention the following recent works:

– YOLO-based approaches (You Only Look Once) were applied, in particular
YOLOv5 models on images from the Geophysical and Astronomical Ob-
servatory of the University of Coimbra [14], and YOLOv5 models to track
sunspots from FITS images taken by the Solar Dynamics Observatory 3.

3 https://github.com/ChrisToumanian/solar-yolo

https://github.com/ChrisToumanian/solar-yolo
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– Analysis of Solar Dynamics Observatory data with two techniques Single
Shot MultiBox Detector (SSD) and the Faster Region-based Convolutional
Neural Network (R-CNN) for multi-classes detection (sunspots, but also
coronal holes and prominences) [2].

– Images classification with Support Vector Machines (SVM) on data coming
from the Michelson Doppler Imager [3].

– HybridVR, based on ResNet50 and VGG16 to extract key features of activity
and environmental characteristics from observed solar images [19].

– It’s not the same task, but we can mention that Deep Learning techniques
are also used for flares detection in Solar Dynamics Observatory data [1].

These methods require realistic and annotated training datasets to be effec-
tive. Data like that from the Solar Dynamics Observatory is often used by the
scientific community. As far as we know, there is not much work based on images
captured in conditions and with equipment accessible to both professionals and
amateurs, except the Solar Database 4.

Moreover, one of the limit of existing detection models is the potential con-
fusion between potential unexpected observation conditions (clouds, trees, etc.)
and real sunspots (Figure 1).

Fig. 1: Solar image captured with a Vespera smart telescope (16/1/2024) and
annotated with a YOLOv5 detection model presented in [14]: the models detect
trees as sunspots – these are false positives.

4 http://solardatabase.free.fr

http://solardatabase.free.fr
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In the following section we explain how we have captured and then annotated
a dataset of solar images obtained in conditions that are not ideal, but which
then allow us to train models less sensitive to these problems.

3 Data acquisition with smart telescopes

For this work, we collected a large amount of high-resolution solar images with
smart telescopes. Between January 2023 and May 2024, The images were gath-
ered in Luxembourg, France and Belgium, in urban environments and with a
rather polluted sky, by using two robotic instruments:

– Stellina 5: its optical part consists of an ED doublet (Extra-low Dispersion)
with a focla ratio of f/5 (aperture of 80 mm, focal length of 400 mm) –
imaging is carried out using a Sony IMX178 CMOS sensor (resolution of 6.4
million pixels, i.e. 3096 Ö 2080).

– Vespera 6 (Figure 2): its optical part consists of an apochromatic quadruplet
with a focal ratio of f/4 (aperture of 50 mm, focal length of 200 mm) –
imaging is carried out using a a Sony IMX462 CMOS sensor (resolution of
2 million pixels, i.e. 1920 Ö 1080).

Dedicated solar filters were used for both telescopes, allowing only the desired
wavelengths to pass through, and to preserve the integrity of the telescope and
sensors (Figure 2).

For each solar observation session, the instruments were properly balanced
using a spirit level on a stable floor.

We also managed to get images even when conditions weren’t ideal, and in
particular in two situations: when the sky was cloudy, and when the sun was
very low on the horizon (to get images masked by tree branches).

As a result, we collected thousands of high-resolution JPEG images, which
were then cropped into patches of 640 Ö 640 pixels. In order to make this set of
patches more heterogeneous in terms of image quality, we applied post-processing
operations on them, such as rotations, contrast enhancement and color satura-
tion, by using a genetic algorithm introduced in [12]. We then annotated these
post-processed patches using MakeSense 7: dedicated to annotating data sets
for recognition purposes, this interactive web application allows anyone to draw,
move, resize and label bounding boxes corresponding to elements present in im-
ages. So we’ve annotated all the sunspots on the images, and we’ve taken care
to ignore any patterns that aren’t sunspots (as in Figure 1).

The images and annotations were compiled into the SunspotsYoloDataset, a
set of 2198 solar images formatted with the YOLO standard, and splitted as 3
sets (1690 for training, 380 for validation, 128 for test). This means that there are
separate files for images and annotations (i.e. text files containing the positions
of sunspots), all stored and compressed in a ZIP file. SunspotsYoloDataset is
available from an open archive on Zenodo [9].

5 https://vaonis.com/stellina
6 https://vaonis.com/vespera
7 https://www.makesense.ai

https://vaonis.com/stellina
https://vaonis.com/vespera
https://www.makesense.ai
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Fig. 2: A Stellina (left) and a Vespera (right) smart telescopes, with dedicated
solar filters.

4 Approach

Based on SunspotsYoloDataset, we then trained several YOLOv7 models with
different architectures (normal, tiny) and various parameters (with or without
transfer learning, etc.). To this end, we used the official implementation avail-
able on Github [18]. This Python source code can be used to train a YOLOv7
model using standard architecture and transfer learning (based on a pre-trained
YOLOv7 model 8) with the following parameters:

python3 train.py --img 640 --weights yolov7.pt

--data ’data/custom.yaml’ --single-cls

--workers 8 --batch-size 4 --epochs 300

--cfg cfg/training/yolov7.yaml

--name sunspots-yolov7

--hyp data/hyp.scratch.p5.yaml

Models training was realized by using Virtual Containers managed via an
instance of Portainer 9, used to exploit the following hardware: 40 cores with
128 GB RAM (Intel(R) Xeon(R) Silver 4210 @ 2.20 GHz CPU) and NVIDIA
Tesla V100-PCIE-32 GB as GPU.

8 https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
9 https://www.portainer.io/

https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt
https://www.portainer.io/
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Fig. 3: A snapshot of 24 images present in the test set of SunspotsYoloDataset,
without the annotations.

We compared the obtained YOLOv7 models to the YOLOv7 models trained
with the dataset called OGAUC solar images marked for YOLO CNN - cycle
24, introduced by [14], available from Kaggle 10 and derived from [14]. This
annotated dataset was originally used to train YOLOv5 models.

The different training pipelines led to the results shown in Table 1. In this
table, we used the following evaluation metrics:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

mAP =
∑
n

(Rn −Rn−1)Pn (3)

10 https://www.kaggle.com/datasets/aaiisec/ogauc-solar-images-marked-for-

yolo-cnn-cycle-24/

https://www.kaggle.com/datasets/aaiisec/ogauc-solar-images-marked-for-yolo-cnn-cycle-24/
https://www.kaggle.com/datasets/aaiisec/ogauc-solar-images-marked-for-yolo-cnn-cycle-24/
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Table 1: Accuracies of different training pipelines based on two datasets, eval-
uated on the test set of SunspotsYoloDataset, i.e. 128 solar annotated images
captured with smart telescopes and with a resolution of 640 x 640 pixels.
Architecture Training dataset Precision Recall mAP@.5 mAP@.5:.95

YOLOv7 Data introduced by [14] 0.815 0.706 0.792 0.452
YOLOv7-tiny Data introduced by [14] 0.832 0.747 0.84 0.492

YOLOv7 SunspotsYoloDataset 0.817 0.814 0.88 0.559
YOLOv7-tiny SunspotsYoloDataset 0.869 0.914 0.915 0.728

From these results, we can make the following observations:

– As expected, the trained YOLOv7 models enable the transformation of a
given input solar image into an annotated image with bounding boxes indi-
cating the estimated position of the detected sunspots (Figure 5).

– The best model was obtained with the YOLOv7 tiny architecture (i.e. 607596
parameters), after 300 epochs (Figure 4).

– Despite its larger size, the YOLOv7 model having the classical architecture
(i.e. 36481772 parameters) is not better (in terms of Precision, Recall, mAP).

– Unsurprisingly, models trained with SunspotsYoloDataset are more efficient
to ignore false positives in solar images disturbed by undesired observation
conditions.

Fig. 4: The evolution of the metrics obtained during the training of the YOLOv7
model on SunspotsYoloDataset.

By using the YoloV7 implementation [18], trained models can by applied
on solar images with the following command line (without inference-time data
augmentation):
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Fig. 5: A solar image captured with a Vespera smart telescope (28/5/2024) and
then annotated by the YOLOv7 tiny model trained with SunspotsYoloDataset.

python3 detect.py --weights [MODEL PATH]

--source [IMAGE PATH OR DIRECTORY]

We then applied eXplainable AI techniques to check the robustness of the
trained detection models. More precisely, we used Grad-CAM (Gradient-weighted
Class Activation Mapping) [16] to visualise the regions of the solar images that
contribute most to the sunspots detection. To this end, we ran model inference
by using the pytorch-grad-cam Python package 11, providing technical support
to produce Grad-CAM heatmaps over solar images annotated with YOLOv7
models (Figure 6).

In this way, we were able to check visually when the Yolov7 model correctly
detects sunpots, using the right areas of the images, while avoiding false positives
by ignoring patterns that are not sunpots (for example, shadows caused by tree
branches when the sun is low in the sky) or when images are hazy (due to clouds).

5 Discussion

5.1 Benefits

SunspotsYoloDataset can be used to train detection models directly, as presented
in the previous section. Moreover, it can be used as an add-on to and existing
other dataset, in order to get more training and/or validation data to obtain
better models.

11 https://github.com/jacobgil/pytorch-grad-cam

https://github.com/jacobgil/pytorch-grad-cam
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Fig. 6: Heatmap obtained after the processing of a solar image captured with
a Vespera smart telescope (27/2/2024), annotated by the YOLOv7 tiny model
trained with SunspotsYoloDataset and then analyszed with Grad-CAM.

YOLOv7 models can help to control the acquisition of solar images, with
similar observation setups, or with equivalent robotic devices (such as ZWO
Asiar [8]). For example, if the YOLO model determines that sunspots are present
during a solar observation session, capture can continue to collect more data
and notification can be sent to the end user. Conversely, if after a certain period
of time no sunspot is detected on the image produced by the instrument, the
software controlling the setup can warn the astronomer to stop the acquisition.

5.2 Limitations

SunspotsYoloDataset was obtained with specific equipment (aperture between
50 and 80 mm, focal length between 200 mm and 400 mm, recent CMOS sensors,
altazimuth mounts) and imperfect conditions (clouds, obstacles, etc.). Detection
models that are obtained from these annotated images can therefore be applied
to images obtained with identical equipment or with similar characteristics (i.e.
other smart telescopes with similar optical and technical characteristics).

Thus, the application of these detection models to images obtained with
instruments of different focal lengths would require the creation of an additional
dataset comprising this specific type of data, which would then be used to retrain
the models. To take an example, images captured with a significantly longer focal
length will have a higher resolution (from an optical point of view), manifested
by larger and more detailed sunspots, and the models obtained in this article
have not been trained to process such images.
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6 Conclusion and perspectives

This paper presents different Deep Learning approaches for sunspot detection
on solar data captured with two recent smart telescopes (Stellina and Vespera)
and specific solar filters.

Between March 2023 and May 2024, we methodically collected and anno-
tated 2198 solar images with the positions of sunspots that are actually in the
images, in order to build a ready-to-train dataset called SunspotsYoloDataset.
We trained YOLOv7 models to automatically detect sunspots while ignoring
undesired objects like clouds, and we analyzed the results of models with the
Grad-CAM technique.

In future research, we aim to build and publish new versions of the dataset
after capturing and processing additional solar images with smart telescopes of
different characteristics (focal length and sensors), and we plan to work on opti-
misations to personalise the models presented and reduce their size so that they
can be integrated into low-resource devices.

Acknowledgements: This research was funded by the Luxembourg Institute
of Science and Technology (LIST), internal grant. Data storage, data process-
ing and detection model training were conducted on the LIST Artificial Intelli-
gence and Data Analytics platform (AIDA), with the assistance of Jean-François
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oloDataset dataset, stored and shared on the Zenodo platform [9]. Additional
materials used to support the results of this paper are available from the corre-
sponding author upon request.
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