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Abstract. Optimal location of wind turbines is a complex decision prob-
lem involving environmental, performance, societal and other parameter.
This paper investigates the domain by describing WindturbinesPlanner:
by providing machine learning models trained on various data sources,
the platform can help to anticipate the potential location of future on-
shore wind turbines in Luxembourg, France, Belgium and Germany.
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1 Introduction

Nowadays, the production of renewable energy is more than ever an ecological
and political priority. Therefore, each citizen can observe the installation of new
wind turbines everywhere.

To understand this trend from a data-driven approach, we have developed
WindturbinesPlanner – a platform to analyse and anticipate the location of
potential future wind turbines in Luxembourg, France, Belgium and Germany.

By applying machine learning techniques on heterogeneous data sources,
WindturbinesPlanner provides predictions that may be useful for politics and
energy actors while considering social acceptance by the public [6]. Weather
conditions like wind speed are obviously important to explain the location of on-
shore wind farms. Nevertheless, WindturbinesPlanner could help to understand
to what extent other criteria may be important in the covered territories.

The rest of this article is organized as follows. Firstly, related works about
wind turbines planning are briefly presented (Section 2). Secondly, the input data
sources are detailed (Section 3). Thirdly, a data-driven prediction approach is
described (Section 4). Finally, the implementation is presented (Section 5) and
the results of preliminary experiments are discussed (Section 6).

2 Related works

As the use of wind energy is a technology that is increasingly used worldwide,
the scientific literature on this topic is very abundant.
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For example, various computational methods for onshore wind farms place-
ment have been proposed:

– Genetic algorithms have been developed to optimize the positioning of wind
turbine in a single area [10, 4].

– Geographic Information System (GIS) have been applied to determine the
areas that could be interesting for wind energy development in Northeast
Nebraska (USA) [9]; a recent solution consider spatial preferences for off-
shore/onshore and farms locations in Denmark [7].

– Other works rather focus on the design of algorithms to optimize the layout
of wind turbines in dedicated farms [12].

Nevertheless, there is no advanced work about the deducing of wind turbines
positions with a purely data-driven approach.

3 Data sources

In order to build a meaningful and exploitable dataset for the prediction of the
location of the next onshore wind turbines, different data sources have been
aggregated for Luxembourg, Belgium, France, Germany:

– List of the current onshore wind turbines locations (for instance: 943 wind
farms listed in France in April 2019) 1.

– Historical time series of daily minimal/maximal/average wind speed values:
each time serie corresponds to a geolocated zone (with a width of 7.5km),
two years of data have been considered.

– STRM digital elevation model 2: it may help to check if the topology is
concretly considered before installing wind turbines.

– Cities positions and populations: it may help to check the distance between
existing wind turbines and town centers, for instance.

– Points of Interests (POI) positions 3: it may have a direct/indirect impact
on wind turbines installation.

Combining these heterogeneous data sources, we have built an aggregated
dataset with the following structure:

– Coordinates of the center of the geographical zone (latitude and longitude).
– Average elevation of the geographical zone.
– Average and Maximum wind speed on a recent time period.
– Distance between the geographical zone center and the nearest POI.
– Count of POI in the considered geographical zone.
– Distance between the geographical zone center and the nearest city.
– Population of the nearest city.
– Class to predict: does the geographical zone accommodate wind turbine(s)?

1 https://data.open-power-system-data.org/renewable_power_plants/
2 https://fr.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
3 http://openpoimap.org/
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Additionally, different scales of precision were considered for the width of ge-
ographical zones: 7500 / 2500 / 1500 / 500 meters (Fig. 1). To give an overview of
the amount of data, considering a width of 500 meters gives a dataset describing
2932088 geographical zones.

Fig. 1. Considering geographical zones near Audun-Le-Tiche (France): the large square
has a width of 7500 meters while the little squares have a width of 2500 meters.

4 Approach

We considered the prediction of wind turbines location as a supervised classifi-
cation problem with these characteristics:

– The input dataset is class-imbalanced [5] – there are much more zones with-
out wind turbines (this kind of problem can be found in different domains
like medical diagnosis or fraud detection).

– False positive should be encouraged in order to detect potentially interesting
geographical zones to accommodate wind turbines.

Therefore, we have applied state-of-the-art machine learning techniques that
are generally effective for class-imabalanced dataset [5]:

– Data Sampling coupled to well-known algorithms like Random Forest [1].
– Ensemble learning methods like Gradient Tree Boost [3].
– One-class Support Vector Machines [8] and One-class Neural Networks [2].
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To check the efficiency of the predictive models obtained with these algo-
rithms, we used the classical indicators: accuracy, precision, recall, F1. Addition-
ally, we focused on the False Discovery Rate in order to control the proportion
of potentially interesting geographical zones for wind turbines.

FalseDiscoveryRate =
False Positives Count

False Positives Count + True Positives Count
(1)

5 Implementation

The proposed approach has been implemented into WindturbinesPlanner: a
Backend for the computation and a Frontend for the interactive presentation
of the results (Fig. 2).

More precisely, the Backend is a set of Javascript command-line tools to
retrieve, preprocess and analyze the input data. Thus the predictive models are
trained and served through a REST API. These scripts are based on LIMDU
4: this library provides efficient implementations of the state-or-the-art machine
learning algorithms.

The Frontend is a web application built uppon the recent React framework 5).
In order to efficiently show the data (several thousands of points and polygons),
we have applied the WebGL technology through the recent DeckGL framework
[11]. Thus, when running the web application on a computer with a decent
graphics card, the user interface remains reactive whatever the amount of data
to display (thanks to the GPU computation).

In practice, a typical usage scenario of WindturbinesPlanner is the following:
after selecting an geographical zone on the map, the end-user can investigate to
check why an area is potentially favorable or unfavorable to accommodate wind
turbines by showing (or hiding): the existing onshore wind turbines, the cities,
the points of interests, the weather data and the potential future wind turbines
for various scales precisions (from 7500 to 500 meters) and different algorithms.

6 Experiments

Machine learning models have been trained and then integrated into Wind-
turbinesPlanner for various configurations. To this end, the main dataset was
splitted into a training dataset and a test dataset (holdout strategy).

According to the results (Table 1), we can observe that increasing the geo-
graphical precision of the prediction has the effect of greatly increasing the size
of the resulting dataset. As a result, it affects the models training time (several
minutes for a precision of 2500 meters, much slower for 500 meters).

Moreover, the experiments have shown that is easy to build accurate predic-
tive models from the current datasets. To anticipate the installation of potential

4 https://github.com/erelsgl/limdu
5 https://reactjs.org
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Fig. 2. WindturbinesPlanner provides an interactive map highlighting geographical
zones that could contain wind turbines (green color) or not (red color). The predictions
can be interpreted by inspecting the input data (wind speed, cities, points of interests).

but not-yet-existing wind turbines, we think it’s better to select highly accu-
rate models that produce a reasonnable rate of false negative by selecting a
geographical zone width (for instance: 1500 meters).

Table 1. Several machine learning models trained to predict if a geographical zone
accomodates wind turbine(s). The indicators have been obtained with the test dataset.

Zone width Dataset size Algorithm Accuracy Precision Recall F1 False Positive Rate

7500 13036 XGBoost 0.94 0.68 0.93 0.79 0.31
2500 117278 SVN 0.99 0.98 0.99 0.99 0.01
1500 325786 SVN 0.99 0.84 0.99 0.91 0.15
500 2932088 SVN 0.99 0.27 0.70 0.40 0.72
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7 Conclusion and perspectives

In this paper, we presented the WindturbinesPlanner platform in order to antic-
ipate the installation of next onshore wind turbines in a given geographical area.
A meaningful dataset was built, machine learning models have been trained and
an interactive user interface was developed.

In future work, we will improve the platform to dynamically highlight the
evolution over time of wind turbines installation policies carried out by profes-
sionals in the energy sector. Moreover, we plan to speed-up the models learning
phase by training the model on a High-Performance supercomputer (HPC). This
should help refine predictions geographically without sacrificing performance.

Acknowledgments: this work was carried out as part of the FEDER Data
Analytics Platform project 6. Special thanks to Anne Hendrick for her support.

References

1. Bellinger, C., Sharma, S., Japkowicz, N., Zäıane, O.R.: Framework for extreme
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